90 research outputs found

    Clustering Athlete Performances in Track and Field Sports

    Get PDF

    Personalized Treatment Selection via Product Partition Models with Covariates

    Full text link
    Precision medicine is an approach for disease treatment that defines treatment strategies based on the individual characteristics of the patients. Motivated by an open problem in cancer genomics, we develop a novel model that flexibly clusters patients with similar predictive characteristics and similar treatment responses; this approach identifies, via predictive inference, which one among a set of treatments is better suited for a new patient. The proposed method is fully model-based, avoiding uncertainty underestimation attained when treatment assignment is performed by adopting heuristic clustering procedures, and belongs to the class of product partition models with covariates, here extended to include the cohesion induced by the Normalized Generalized Gamma process. The method performs particularly well in scenarios characterized by considerable heterogeneity of the predictive covariates in simulation studies. A cancer genomics case study illustrates the potential benefits in terms of treatment response yielded by the proposed approach. Finally, being model-based, the approach allows estimating clusters' specific response probabilities and then identifying patients more likely to benefit from personalized treatment.Comment: 31 pages, 7 figure

    Model-based clustering of categorical data based on the Hamming distance

    Full text link
    A model-based approach is developed for clustering categorical data with no natural ordering. The proposed method exploits the Hamming distance to define a family of probability mass functions to model the data. The elements of this family are then considered as kernels of a finite mixture model with unknown number of components. Conjugate Bayesian inference has been derived for the parameters of the Hamming distribution model. The mixture is framed in a Bayesian nonparametric setting and a transdimensional blocked Gibbs sampler is developed to provide full Bayesian inference on the number of clusters, their structure and the group-specific parameters, facilitating the computation with respect to customary reversible jump algorithms. The proposed model encompasses a parsimonious latent class model as a special case, when the number of components is fixed. Model performances are assessed via a simulation study and reference datasets, showing improvements in clustering recovery over existing approaches
    • …
    corecore